磁控溅射真空镀膜机镀膜工艺在镀膜行业无处不在,只要说到镀膜技术,大家都会立刻想到磁控镀膜工艺,磁控溅射真空镀膜机也受到了各大厂家的追捧,磁控溅射镀膜工艺更是受到大家的喜爱,今天汇成小编为大家介绍一下磁控溅射镀膜机镀膜工艺。
其实从一般的金属靶材溅射、反应溅射、偏压溅射等,伴随着工业需求及新型磁控溅射技术的出现,低压溅射、高速沉积、自支撑溅射沉积、多重表面工程以及脉冲溅射等新型工艺成为目前该领域的发展趋势。低压溅射的关键问题是在低压(一般是指<011pa)下,电子与气体原子的碰撞几率降低,在常规磁控溅射技术中不足以维持靶材表面的辉光放电,导致溅射沉积无法继续进行。通过优化磁场设计,使得电子空间运动距离延长,非平衡磁控溅射技术可以实现在10-2pa级的真空下进行溅射沉积。另外,通过外加电磁场约束电子运动可以实现更低压强下的溅射沉积。进行高速沉积可以极大的提高工作效率、减少工作气体消耗以及获得新型膜层。实现高速沉积主要需要解决的问题是在提高靶材电流密度的同时,不会产生弧光放电;由于功率密度的提高,靶材、衬底的冷却能力需要相应提高等。目前,已经实现了靶材功率密度超过100w/cm2,沉积速率超过1μm/min。
利用高速沉积在替代传统电镀方面具有诱人前景。高速沉积过程中,通过提高溅射粒子的离化率,可以实现不通入工作气体也能够维持放电沉积,即形成自支撑溅射沉积。自支撑溅射沉积在提高薄膜与基体结合力、消除薄膜内部缺陷、制备高纯薄膜等方面具有重要作用。磁控溅射技术与其他表面工程技术结合是磁控溅射技术发展的又一主要方向。尽管磁控溅射技术具有诸多优点,但是目前在工业表面工程领域占据的份额仍然很少,传统表面技术仍然占据主导地位。影响其应用的一个主要原因是衬底材料如低合金钢、钛合金太软无法与溅射技术获得的超硬等功能薄膜匹配。相对于非常硬的涂层,衬底太软无法承受载荷压力。反之,对于耐腐蚀场合,针眼状缺陷会导致涂层失效。为克服此类问题,发展了多重表面工程技术,即利用几种表面工程技术依次对材料进行表面改性,获得的表面改性层具有单一表面技术无法比拟的优点。首先进行n化,然后进行溅射沉积是一个的典型例子,n化提供500μm厚、硬度达10gpa的亚表面,然后沉积3~5μm的tin;tin提供材料高的耐磨能力,n化层提供高的承载及耐疲劳能力。
以上是对
磁控溅射真空镀膜机镀膜工艺比价较专业的介绍,刚进入行业的新人可能对这个不太能理解,不过没关系,随着经验的积累,慢慢也就懂了。